Project

General

Profile

Actions

Feature #12871

closed

Using the algorithm like math.fsum of Python for Array#sum

Added by labocho (Keisuke NISHI) about 8 years ago. Updated almost 8 years ago.

Status:
Closed
Target version:
-
[ruby-core:77771]

Description

Array#sum uses the Kahan's algorithm for Float values now. But it returns inaccurate value in some case like below.

# ruby 2.4.0-preview2
[10000000000.0, 0.0000000001, -10000000000.0].sum #=> 0.0 (expected 0.0000000001)

Python's math.fsum uses another algorithm. It saves all digits, and returns accurate value in such a case.
(See: https://github.com/python/cpython/blob/d267006f18592165ed97e0a9c2494d3bce25fc2b/Modules/mathmodule.c#L1087)

# python 3.5.2
from math import fsum
fsum([10000000000.0, 0.0000000001, -10000000000.0]) #=> 0.0000000001

I propose to use the algorithm like math.fsum of Python for Array#sum.

This is an example implementation in Ruby.

class Array
  # This implementation does not consider non float values
  def sum
    partials = []

    each do |x|
      i = 0
      partials.each do |y|
        x, y = y, x if x.abs < y.abs
        hi = x + y # upper bits
        lo = y - (hi - x) # lower bits (lost)
        if lo != 0.0
          partials[i] = lo
          i += 1
        end
        x = hi
      end
      partials[i..-1] = [x]
    end

    partials.inject(0.0, :+)
  end
end

Updated by mrkn (Kenta Murata) almost 8 years ago

  • Status changed from Open to Assigned
  • Assignee set to mrkn (Kenta Murata)

Updated by t-nissie (Takeshi Nishimatsu) almost 8 years ago

A quick hack.

  • Elongation (or reallocation) of the array of partials[] when nn exeeds NUM_PARTIALS.
  • Tests.
  • Name of this algorithm. Kahan-Babuska-Neumaier?

are required.

diff --git a/array.c b/array.c
index b99ab45..2b818bf 100644
--- a/array.c
+++ b/array.c
@@ -5688,6 +5688,8 @@ rb_ary_dig(int argc, VALUE *argv, VALUE self)
     return rb_obj_dig(argc, argv, self, Qnil);
 }
 
+#define NUM_PARTIALS  32  /* initial partials array size, on stack */
+
 /*
  * call-seq:
  *   ary.sum(init=0)                    -> number
@@ -5796,14 +5798,15 @@ rb_ary_sum(int argc, VALUE *argv, VALUE ary)
     }
 
     if (RB_FLOAT_TYPE_P(e)) {
-        /* Kahan's compensated summation algorithm */
-        double f, c;
+        /* ???'s compensated summation algorithm */
+        double f,partials[NUM_PARTIALS];
+        long ii, jj, nn;
 
-        f = NUM2DBL(v);
-        c = 0.0;
+        partials[0] = NUM2DBL(v);
+        nn=1;
         goto has_float_value;
         for (; i < RARRAY_LEN(ary); i++) {
-            double x, y, t;
+          double x, y, tmp, hi, lo;
             e = RARRAY_AREF(ary, i);
             if (block_given)
                 e = rb_yield(e);
@@ -5819,10 +5822,28 @@ rb_ary_sum(int argc, VALUE *argv, VALUE ary)
             else
                 goto not_float;
 
-            y = x - c;
-            t = f + y;
-            c = (t - f) - y;
-            f = t;
+            ii = 0;
+            for (jj=0; jj < nn; jj++) {
+              y = partials[jj];
+              if (fabs(x) < fabs(y)) {
+                tmp = x;
+                x = y;
+                y =tmp;
+              }
+              hi = x + y; /* upper bits */
+              lo = y - (hi - x); /* lower bits (lost) */
+              if (lo != 0.0) {
+                partials[ii] = lo;
+                ii += 1;
+              }
+              x = hi;
+            }
+            partials[ii] = x;
+            nn = ii+1;
+        }
+        f = 0.0;
+        for (i=0; i<nn; i++) {
+          f += partials[i];
         }
         return DBL2NUM(f);
 

Updated by t-nissie (Takeshi Nishimatsu) almost 8 years ago

Julia can do it, too.

julia> sum_kbn([1.0e10, 1.0e-10, -1.0e10])
1.0e-10

The source code is https://github.com/JuliaLang/julia/blob/master/base/reduce.jl .

Actions #4

Updated by mrkn (Kenta Murata) almost 8 years ago

  • Status changed from Assigned to Closed

Applied in changeset r57001.


array.c, enum.c: change sum algorithm

  • array.c (rb_ary_sum): change the algorithm to Kahan-Babuska balancing
    summation to be more precise.
    [Feature #12871] [ruby-core:77771]

  • enum.c (sum_iter, enum_sum): ditto.

  • test_array.rb, test_enum.rb: add an assertion for the above change.

Updated by mrkn (Kenta Murata) almost 8 years ago

Takeshi Nishimatsu wrote:

Julia can do it, too.

julia> sum_kbn([1.0e10, 1.0e-10, -1.0e10])
1.0e-10

The source code is https://github.com/JuliaLang/julia/blob/master/base/reduce.jl .

Thank you for pointing the information.

I referred the paper written by A. Klein [1], and employed the algorithm in that paper.
It is the same algorithm of sum_kbn in Julia.

[1] Klein, A. Computing (2006) 76: 279. http://link.springer.com/article/10.1007/s00607-005-0139-x

Updated by labocho (Keisuke NISHI) almost 8 years ago

Thank you.

Julia's algorithm looks good. But in some case, Python's algorithm is still better than that.

# julia 0.5.0
sum_kbn([1.0e100, 1.0, 1.0e-100, -1.0, -1.0e100]) # => 0.0
# python 3.5.2
from math import fsum
fsum([1.0e100, 1.0, 1.0e-100, -1.0, -1.0e100]) # => 1e-100
```

Is it acceptable?
Actions

Also available in: Atom PDF

Like0
Like0Like0Like0Like0Like0Like0