Project

General

Profile

Bug #1640 » rational.c-documentation.patch

runpaint (Run Paint Run Run), 06/18/2009 10:11 AM

View differences:

rational.c
return rb_funcall2(rb_cRational, id_convert, argc, argv);
}
/*
* call-seq:
* rat.numerator => integer
*
* Returns the numerator of _rat_ as an +Integer+ object.
*
* For example:
*
* Rational(7).numerator #=> 7
* Rational(7, 1).numerator #=> 7
* Rational(4.3, 40.3).numerator #=> 4841369599423283
* Rational(9, -4).numerator #=> -9
* Rational(-2, -10).numerator #=> 1
*/
static VALUE
nurat_numerator(VALUE self)
{
......
return dat->num;
}
/*
* call-seq:
* rat.denominator => integer
*
* Returns the denominator of _rat_ as an +Integer+ object. If _rat_ was
* created without an explicit denominator, +1+ is returned.
*
* For example:
*
* Rational(7).denominator #=> 1
* Rational(7, 1).denominator #=> 1
* Rational(4.3, 40.3).denominator #=> 45373766245757744
* Rational(9, -4).denominator #=> 4
* Rational(-2, -10).denominator #=> 5
*/
static VALUE
nurat_denominator(VALUE self)
{
......
return f_rational_new_no_reduce2(CLASS_OF(self), num, den);
}
/*
* call-seq:
* rat + numeric => numeric_result
*
* Performs addition. The class of the resulting object depends on
* the class of _numeric_ and on the magnitude of the
* result.
*
* A +TypeError+ is raised unless _numeric_ is a +Numeric+ object.
*
* For example:
*
* Rational(2, 3) + Rational(2, 3) #=> (4/3)
* Rational(900) + Rational(1) #=> (900/1)
* Rational(-2, 9) + Rational(-9, 2) #=> (-85/18)
* Rational(9, 8) + 4 #=> (41/8)
* Rational(20, 9) + 9.8 #=> 12.022222222222222
* Rational(8, 7) + 2**20 #=> (7340040/7)
*/
static VALUE
nurat_add(VALUE self, VALUE other)
{
......
}
}
/*
* call-seq:
* rat - numeric => numeric_result
*
* Performs subtraction. The class of the resulting object depends on the
* class of _numeric_ and on the magnitude of the result.
*
* A +TypeError+ is raised unless _numeric_ is a +Numeric+ object.
*
* For example:
*
* Rational(2, 3) - Rational(2, 3) #=> (0/1)
* Rational(900) - Rational(1) #=> (899/1)
* Rational(-2, 9) - Rational(-9, 2) #=> (77/18)
* Rational(9, 8) - 4 #=> (23/8)
* Rational(20, 9) - 9.8 #=> -7.577777777777778
* Rational(8, 7) - 2**20 #=> (-7340024/7)
*/
static VALUE
nurat_sub(VALUE self, VALUE other)
{
......
return f_rational_new_no_reduce2(CLASS_OF(self), num, den);
}
/*
* call-seq:
* rat * numeric => numeric_result
*
* Performs multiplication. The class of the resulting object depends on
* the class of _numeric_ and on the magnitude of the result.
*
* A +TypeError+ is raised unless _numeric_ is a +Numeric+ object.
*
* For example:
*
* Rational(2, 3) * Rational(2, 3) #=> (4/9)
* Rational(900) * Rational(1) #=> (900/1)
* Rational(-2, 9) * Rational(-9, 2) #=> (1/1)
* Rational(9, 8) * 4 #=> (9/2)
* Rational(20, 9) * 9.8 #=> 21.77777777777778
* Rational(8, 7) * 2**20 #=> (8388608/7)
*/
static VALUE
nurat_mul(VALUE self, VALUE other)
{
......
}
}
/*
* call-seq:
* rat / numeric => numeric_result
* rat.quo(numeric) => numeric_result
*
* Performs division. The class of the resulting object depends on the class
* of _numeric_ and on the magnitude of the result.
*
* A +TypeError+ is raised unless _numeric_ is a +Numeric+ object. A
* +ZeroDivisionError+ is raised if _numeric_ is 0.
*
* For example:
*
* Rational(2, 3) / Rational(2, 3) #=> (1/1)
* Rational(900) / Rational(1) #=> (900/1)
* Rational(-2, 9) / Rational(-9, 2) #=> (4/81)
* Rational(9, 8) / 4 #=> (9/32)
* Rational(20, 9) / 9.8 #=> 0.22675736961451246
* Rational(8, 7) / 2**20 #=> (1/917504)
* Rational(2, 13) / 0 #=> ZeroDivisionError: divided by zero
* Rational(2, 13) / 0.0 #=> Infinity
*/
static VALUE
nurat_div(VALUE self, VALUE other)
{
......
}
}
/*
* call-seq:
* rat.fdiv(numeric) => float
*
* Performs float division: dividing _rat_ by _numeric_. The return value is a
* +Float+ object.
*
* A +TypeError+ is raised unless _numeric_ is a +Numeric+ object.
*
* For example:
*
* Rational(2, 3).fdiv(1) #=> 0.6666666666666666
* Rational(2, 3).fdiv(0.5) #=> 1.3333333333333333
* Rational(2).fdiv(3) #=> 0.6666666666666666
* Rational(-9, 6.6).fdiv(6.6) #=> -0.20661157024793392
* Rational(-20).fdiv(0.0) #=> -Infinity
*/
static VALUE
nurat_fdiv(VALUE self, VALUE other)
{
return f_div(f_to_f(self), other);
}
/*
* call-seq:
* rat ** numeric => numeric_result
*
* Performs exponentiation, i.e. it raises _rat_ to the exponent _numeric_.
* The class of the resulting object depends on the class of _numeric_ and on
* the magnitude of the result. A +TypeError+ is raised unless _numeric_ is a
* +Numeric+ object.
*
* For example:
*
* Rational(2, 3) ** Rational(2, 3) #=> 0.7631428283688879
* Rational(900) ** Rational(1) #=> (900/1)
* Rational(-2, 9) ** Rational(-9, 2) #=> NaN
* Rational(9, 8) ** 4 #=> (6561/4096)
* Rational(20, 9) ** 9.8 #=> 2503.325740344559
* Rational(3, 2) ** 2**3 #=> (6561/256)
* Rational(2, 13) ** 0 #=> (1/1)
* Rational(2, 13) ** 0.0 #=> 1.0
*/
static VALUE
nurat_expt(VALUE self, VALUE other)
{
......
}
}
/*
* call-seq:
* rat <=> numeric => -1, 0, +1
*
* Performs comparison. Returns -1, 0, or +1 depending on whether _rat_ is
* less than, equal to, or greater than _numeric_. This is the basis for the
* tests in +Comparable+.
*
* A +TypeError+ is raised unless _numeric_ is a +Numeric+ object.
*
* For example:
*
* Rational(2, 3) <=> Rational(2, 3) #=> 0
* Rational(5) <=> 5 #=> 0
* Rational(900) <=> Rational(1) #=> 1
* Rational(-2, 9) <=> Rational(-9, 2) #=> 1
* Rational(9, 8) <=> 4 #=> -1
* Rational(20, 9) <=> 9.8 #=> -1
* Rational(5, 3) <=> 'string' #=> TypeError: String can't
* # be coerced into Rational
*/
static VALUE
nurat_cmp(VALUE self, VALUE other)
{
......
}
}
/*
* call-seq:
* rat == numeric => +true+ or +false+
*
* Tests for equality. Returns +true+ if _rat_ is equal to _numeric_; +false+
* otherwise.
*
* For example:
*
* Rational(2, 3) == Rational(2, 3) #=> +true+
* Rational(5) == 5 #=> +true+
* Rational(7, 1) == Rational(7) #=> +true+
* Rational(-2, 9) == Rational(-9, 2) #=> +false+
* Rational(9, 8) == 4 #=> +false+
* Rational(5, 3) == 'string' #=> +false+
*/
static VALUE
nurat_equal_p(VALUE self, VALUE other)
{
......
}
}
/*
* call-seq:
* rat.coerce(numeric) => array
*
* If _numeric_ is a +Rational+ object, returns an +Array+ containing _rat_
* and _numeric_. Otherwise, returns an +Array+ with both _rat_ and _numeric_
* represented in the most accurate common format. This coercion mechanism is
* used by Ruby to handle mixed-type numeric operations: it is intended to
* find a compatible common type between the two operands of the operator.
*
* For example:
*
* Rational(2).coerce(Rational(3)) #=> [(2), (3)]
* Rational(5).coerce(7) #=> [(7, 1), (5, 1)]
* Rational(9, 8).coerce(4) #=> [(4, 1), (9, 8)]
* Rational(7, 12).coerce(9.9876) #=> [9.9876, 0.5833333333333334]
* Rational(4).coerce(9/0.0) #=> [Infinity, 4.0]
* Rational(5, 3).coerce('string') #=> TypeError: String can't be
* # coerced into Rational
*/
static VALUE
nurat_coerce(VALUE self, VALUE other)
{
......
return Qnil;
}
/*
* call-seq:
* rat.div(numeric) => integer
*
* Uses +/+ to divide _rat_ by _numeric_, then returns the floor of the result
* as an +Integer+ object.
*
* A +TypeError+ is raised unless _numeric_ is a +Numeric+ object. A
* +ZeroDivisionError+ is raised if _numeric_ is 0. A +FloatDomainError+ is
* raised if _numeric_ is 0.0.
*
* For example:
*
* Rational(2, 3).div(Rational(2, 3)) #=> 1
* Rational(-2, 9).div(Rational(-9, 2)) #=> 0
* Rational(3, 4).div(0.1) #=> 7
* Rational(-9).div(9.9) #=> -1
* Rational(3.12).div(0.5) #=> 6
* Rational(200, 51).div(0) #=> ZeroDivisionError:
* # divided by zero
*/
static VALUE
nurat_idiv(VALUE self, VALUE other)
{
return f_floor(f_div(self, other));
}
/*
* call-seq:
* rat.modulo(numeric) => numeric
* rat % numeric => numeric
*
* Returns the modulo of _rat_ and _numeric_ as a +Numeric+ object, i.e.:
*
* _rat_-_numeric_*(rat/numeric).floor
*
* A +TypeError+ is raised unless _numeric_ is a +Numeric+ object. A
* +ZeroDivisionError+ is raised if _numeric_ is 0. A +FloatDomainError+ is
* raised if _numeric_ is 0.0.
*
* For example:
*
* Rational(2, 3) % Rational(2, 3) #=> (0/1)
* Rational(2) % Rational(300) #=> (2/1)
* Rational(-2, 9) % Rational(9, -2) #=> (-2/9)
* Rational(8.2) % 3.2 #=> 1.799999999999999
* Rational(198.1) % 2.3e3 #=> 198.1
* Rational(2, 5) % 0.0 #=> FloatDomainError: Infinity
*/
static VALUE
nurat_mod(VALUE self, VALUE other)
{
......
return f_sub(self, f_mul(other, val));
}
/*
* call-seq:
* rat.divmod(numeric) => array
*
* Returns a two-element +Array+ containing the quotient and modulus obtained
* by dividing _rat_ by _numeric_. Both elements are +Numeric+.
*
* A +ZeroDivisionError+ is raised if _numeric_ is 0. A +FloatDomainError+ is
* raised if _numeric_ is 0.0. A +TypeError+ is raised unless _numeric_ is a
* +Numeric+ object.
*
* For example:
*
* Rational(3).divmod(3) #=> [1, (0/1)]
* Rational(4).divmod(3) #=> [1, (1/1)]
* Rational(5).divmod(3) #=> [1, (2/1)]
* Rational(6).divmod(3) #=> [2, (0/1)]
* Rational(2, 3).divmod(Rational(2, 3)) #=> [1, (0/1)]
* Rational(-2, 9).divmod(Rational(9, -2)) #=> [0, (-2/9)]
* Rational(11.5).divmod(Rational(3.5)) #=> [3, (1/1)]
*/
static VALUE
nurat_divmod(VALUE self, VALUE other)
{
......
}
#if 0
/* :nodoc: */
static VALUE
nurat_quot(VALUE self, VALUE other)
{
......
}
#endif
/*
* call-seq: rat.remainder(numeric) => numeric_result
*
* Returns the remainder of dividing _rat_ by _numeric_ as a +Numeric+ object,
* i.e.:
*
* _rat_-_numeric_*(_rat_/_numeric_).truncate
*
* A +ZeroDivisionError+ is raised if _numeric_ is 0. A +FloatDomainError+ is
* raised if the result is Infinity or NaN, or _numeric_ is 0.0. A +TypeError+
* is raised unless _numeric_ is a +Numeric+ object.
*
* For example:
*
* Rational(3, 4).remainder(Rational(3)) #=> (3/4)
* Rational(12,13).remainder(-8) #=> (12/13)
* Rational(2,3).remainder(-Rational(3,2)) #=> (2/3)
* Rational(-5,7).remainder(7.1) #=> -0.7142857142857143
* Rational(1).remainder(0) # ZeroDivisionError:
* # divided by zero
*/
static VALUE
nurat_rem(VALUE self, VALUE other)
{
......
}
#if 0
/* :nodoc: */
static VALUE
nurat_quotrem(VALUE self, VALUE other)
{
......
}
#endif
/*
* call-seq:
* rat.abs => rational
*
* Returns the absolute value of _rat_. If _rat_ is positive, it is
* returned; if _rat_ is negative its negation is returned. The return value
* is a +Rational+ object.
*
* For example:
*
* Rational(2).abs #=> (2/1)
* Rational(-2).abs #=> (2/1)
* Rational(-8, -1).abs #=> (8/1)
* Rational(-20, 7).abs #=> (20/7)
*/
static VALUE
nurat_abs(VALUE self)
{
......
}
#if 0
/* :nodoc: */
static VALUE
nurat_true(VALUE self)
{
......
return f_negate(f_idiv(f_negate(dat->num), dat->den));
}
/*
* call-seq:
* rat.to_i => integer
*
* Returns _rat_ truncated to an integer as an +Integer+ object.
*
* For example:
*
* Rational(2, 3).to_i #=> 0
* Rational(3).to_i #=> 3
* Rational(300.6).to_i #=> 300
* Rational(98,71).to_i #=> 1
* Rational(-30,2).to_i #=> -15
*/
static VALUE
nurat_truncate(VALUE self)
{
......
return s;
}
/*
* call-seq:
* rat.floor => integer
* rat.floor(precision=0) => numeric
*
* Returns the largest integer less than or equal to _rat_ as an +Integer+
* object. Contrast with +Rational#ceil+.
*
* An optional _precision_ argument can be supplied as an +Integer+. If
* _precision_ is positive the result is rounded downwards to that number of
* decimal places. If _precision_ is negative, the result is rounded downwards
* to the nearest 10**_precision_. By default _precision_ is equal to 0,
* causing the result to be a whole number.
*
* For example:
*
* Rational(2, 3).floor #=> 0
* Rational(3).floor #=> 3
* Rational(300.6).floor #=> 300
* Rational(98,71).floor #=> 1
* Rational(-30,2).floor #=> -15
*
* Rational(-1.125).floor.to_f #=> -2.0
* Rational(-1.125).floor(1).to_f #=> -1.2
* Rational(-1.125).floor(2).to_f #=> -1.13
* Rational(-1.125).floor(-2).to_f #=> -100.0
* Rational(-1.125).floor(-1).to_f #=> -10.0
*/
static VALUE
nurat_floor_n(int argc, VALUE *argv, VALUE self)
{
return nurat_round_common(argc, argv, self, nurat_floor);
}
/*
* call-seq:
* rat.ceil => integer
* rat.ceil(precision=0) => numeric
*
* Returns the smallest integer greater than or equal to _rat_ as an +Integer+
* object. Contrast with +Rational#floor+.
*
* An optional _precision_ argument can be supplied as an +Integer+. If
* _precision_ is positive the result is rounded upwards to that number of
* decimal places. If _precision_ is negative, the result is rounded upwards
* to the nearest 10**_precision_. By default _precision_ is equal to 0,
* causing the result to be a whole number.
*
* For example:
*
* Rational(2, 3).ceil #=> 1
* Rational(3).ceil #=> 3
* Rational(300.6).ceil #=> 301
* Rational(98, 71).ceil #=> 2
* Rational(-30, 2).ceil #=> -15
*
* Rational(-1.125).ceil.to_f #=> -1.0
* Rational(-1.125).ceil(1).to_f #=> -1.1
* Rational(-1.125).ceil(2).to_f #=> -1.12
* Rational(-1.125).ceil(-2).to_f #=> 0.0
*/
static VALUE
nurat_ceil_n(int argc, VALUE *argv, VALUE self)
{
return nurat_round_common(argc, argv, self, nurat_ceil);
}
/*
* call-seq:
* rat.truncate => integer
* rat.truncate(precision=0) => numeric
*
* Truncates self to an integer and returns the result as an +Integer+ object.
*
* An optional _precision_ argument can be supplied as an +Integer+. If
* _precision_ is positive the result is rounded downwards to that number of
* decimal places. If _precision_ is negative, the result is rounded downwards
* to the nearest 10**_precision_. By default _precision_ is equal to 0,
* causing the result to be a whole number.
*
* For example:
*
* Rational(2, 3).truncate #=> 0
* Rational(3).truncate #=> 3
* Rational(300.6).truncate #=> 300
* Rational(98,71).truncate #=> 1
* Rational(-30,2).truncate #=> -15
* Rational(-30, -11).truncate #=> 2
*
* Rational(-123.456).truncate(2).to_f #=> -123.45
* Rational(-123.456).truncate(1).to_f #=> -123.4
* Rational(-123.456).truncate.to_f #=> -123.0
* Rational(-123.456).truncate(-1).to_f #=> -120.0
* Rational(-123.456).truncate(-2).to_f #=> -100.0
*/
static VALUE
nurat_truncate_n(int argc, VALUE *argv, VALUE self)
{
return nurat_round_common(argc, argv, self, nurat_truncate);
}
/*
* call-seq:
* rat.round => integer
* rat.round(precision=0) => numeric
*
* Rounds _rat_ to an integer, and returns the result as an +Integer+ object.
*
* An optional _precision_ argument can be supplied as an +Integer+. If
* _precision_ is positive the result is rounded to that number of decimal
* places. If _precision_ is negative, the result is rounded to the nearest
* 10**_precision_. By default _precision_ is equal to 0, causing the result
* to be a whole number.
*
* A +TypeError+ is raised if _integer_ is given and not an +Integer+ object.
*
* For example:
*
* Rational(9, 3.3).round #=> 3
* Rational(9, 3.3).round(1) #=> (27/10)
* Rational(9,3.3).round(2) #=> (273/100)
* Rational(8, 7).round(5) #=> (57143/50000)
* Rational(-20, -3).round #=> 7
*
* Rational(-123.456).round(2).to_f #=> -123.46
* Rational(-123.456).round(1).to_f #=> -123.5
* Rational(-123.456).round.to_f #=> -123.0
* Rational(-123.456).round(-1).to_f #=> -120.0
* Rational(-123.456).round(-2).to_f #=> -100.0
*
*/
static VALUE
nurat_round_n(int argc, VALUE *argv, VALUE self)
{
return nurat_round_common(argc, argv, self, nurat_round);
}
/*
* call-seq:
* rat.to_f => float
*
* Converts _rat_ to a floating point number and returns the result as a
* +Float+ object.
*
* For example:
*
* Rational(2).to_f #=> 2.0
* Rational(9, 4).to_f #=> 2.25
* Rational(-3, 4).to_f #=> -0.75
* Rational(20, 3).to_f #=> 6.666666666666667
*/
static VALUE
nurat_to_f(VALUE self)
{
......
return f_fdiv(dat->num, dat->den);
}
/*
* call-seq:
* rat.to_r => self
*
* Returns self, i.e. a +Rational+ object representing _rat_.
*
* For example:
*
* Rational(2).to_r #=> (2/1)
* Rational(-8, 6).to_r #=> (-4/3)
* Rational(39.2).to_r #=> (2758454771764429/70368744177664)
*/
static VALUE
nurat_to_r(VALUE self)
{
......
return s;
}
/*
* call-seq:
* rat.to_s => string
*
* Returns a +String+ representation of _rat_ in the form
* "_numerator_/_denominator_".
*
* For example:
*
* Rational(2).to_s #=> "2/1"
* Rational(-8, 6).to_s #=> "-4/3"
* Rational(0.5).to_s #=> "1/2"
*/
static VALUE
nurat_to_s(VALUE self)
{
return nurat_format(self, f_to_s);
}
/*
* call-seq:
* rat.inspect => string
*
* Returns a +String+ containing a human-readable representation of _rat_ in
* the form "(_numerator_/_denominator_)".
*
* For example:
*
* Rational(2).to_s #=> "(2/1)"
* Rational(-8, 6).to_s #=> "(-4/3)"
* Rational(0.5).to_s #=> "(1/2)"
*/
static VALUE
nurat_inspect(VALUE self)
{
......
return s;
}
/* :nodoc: */
static VALUE
nurat_marshal_dump(VALUE self)
{
......
return a;
}
/* :nodoc: */
static VALUE
nurat_marshal_load(VALUE self, VALUE a)
{
......
/* --- */
/*
* call-seq:
* int.gcd(_int2_) => integer
*
* Returns the greatest common divisor of _int_ and _int2_: the largest
* positive integer that divides the two without a remainder. The result is an
* +Integer+ object.
*
* An +ArgumentError+ is raised unless _int2_ is an +Integer+ object.
*
* For example:
*
* 2.gcd(2) #=> 2
* -2.gcd(2) #=> 2
* 8.gcd(6) #=> 2
* 25.gcd(5) #=> 5
*/
VALUE
rb_gcd(VALUE self, VALUE other)
{
......
return f_gcd(self, other);
}
/*
* call-seq:
* int.lcm(_int2_) => integer
*
* Returns the least common multiple (or "lowest common multiple") of _int_
* and _int2_: the smallest positive integer that is a multiple of both
* integers. The result is an +Integer+ object.
*
* An +ArgumentError+ is raised unless _int2_ is an +Integer+ object.
*
* For example:
*
* 2.lcm(2) #=> 2
* -2.gcd(2) #=> 2
* 8.gcd(6) #=> 24
* 8.lcm(9) #=> 72
*/
VALUE
rb_lcm(VALUE self, VALUE other)
{
......
return f_lcm(self, other);
}
/*
* call-seq:
* int.gcdlcm(_int2_) => array
*
* Returns a two-element +Array+ containing _int_.gcd(_int2_) and
* _int_.lcm(_int2_) respectively. That is, the greatest common divisor of
* _int_ and _int2_, then the least common multiple of _int_ and _int2_. Both
* elements are +Integer+ objects.
*
* An +ArgumentError+ is raised unless _int2_ is an +Integer+ object.
*
* For example:
*
* 2.gcdlcm(2) #=> [2, 2]
* -2.gcdlcm(2) #=> [2, 2]
* 8.gcdlcm(6) #=> [2, 24]
* 8.gcdlcm(9) #=> [1, 72]
* 9.gcdlcm(9**9) #=> [9, 387420489]
*/
VALUE
rb_gcdlcm(VALUE self, VALUE other)
{
......
return nurat_s_convert(2, a, rb_cRational);
}
/*
* call-seq:
* nil.to_r => Rational(0, 1)
*
* Returns a +Rational+ object representing _nil_ as a rational number.
*
* For example:
*
* nil.to_r #=> (0/1)
*/
static VALUE
nilclass_to_r(VALUE self)
{
return rb_rational_new1(INT2FIX(0));
}
/*
* call-seq:
* int.to_r => rational
*
* Returns a +Rational+ object representing _int_ as a rational number.
*
* For example:
*
* 1.to_r #=> (1/1)
* 12.to_r #=> (12/1)
*/
static VALUE
integer_to_r(VALUE self)
{
......
}
#endif
/*
* call-seq:
* flt.to_r => rational
*
* Returns _flt_ as an +Rational+ object. Raises a +FloatDomainError+ if _flt_
* is +Infinity+ or +NaN+.
*
* For example:
*
* 2.0.to_r #=> (2/1)
* 2.5.to_r #=> (5/2)
* -0.75.to_r #=> (-3/4)
* 0.0.to_r #=> (0/1)
* (1/0.0).to_r #=> FloatDomainError: Infinity
*/
static VALUE
float_to_r(VALUE self)
{
......
#define id_gsub rb_intern("gsub")
#define f_gsub(x,y,z) rb_funcall(x, id_gsub, 2, y, z)
/*
* call-seq:
* string.to_r => rational
*
* Returns a +Rational+ object representing _string_ as a rational number.
* Leading and trailing whitespace is ignored. Underscores may be used to
* separate numbers. If _string_ is not recognised as a rational, (0/1) is
* returned.
*
* For example:
*
* "2".to_r #=> (2/1)
* "300/2".to_r #=> (150/1)
* "-9.2/3".to_r #=> (-46/15)
* " 2/9 ".to_r #=> (2/9)
* "2_9".to_r #=> (29/1)
* "?".to_r #=> (0/1)
*/
static VALUE
string_to_r(VALUE self)
{
......
}
}
/*
* A +Rational+ object represents a rational number, which is any number that
* can be expressed as the quotient a/b of two integers (where the denominator
* is nonzero). Given that b may be equal to 1, every integer is rational.
*
* A +Rational+ object can be created with the +Rational()+ constructor:
*
* Rational(1) #=> (1/1)
* Rational(2, 3) #=> (2/3)
* Rational(0.5) #=> (1/2)
* Rational("2/7") #=> (2/7)
* Rational("0.25") #=> (1/4)
* Rational(10e3) #=> (10000/1)
*
* The first argument is the numerator, the second the denominator. If the
* denominator is not supplied it defaults to 1. The arguments can be
* +Numeric+ or +String+ objects.
*
* Rational(12) == Rational(12, 1) #=> true
*
* A +ZeroDivisionError+ will be raised if 0 is specified as the denominator:
*
* Rational(3, 0) #=> ZeroDivisionError: divided by zero
*
* The numerator and denominator of a +Rational+ object can be retrieved with
* the +Rational#numerator+ and +Rational#denominator+ accessors,
* respectively.
*
* rational = Rational(4, 7) #=> (4/7)
* rational.numerator #=> 4
* rational.denominator #=> 7
*
* A +Rational+ is automatically reduced into its simplest form:
*
* Rational(10, 2) #=> (5/1)
*
* +Numeric+ and +String+ objects can be converted into a +Rational+ with
* their +#to_r+ methods.
*
* 30.to_r #=> (30/1)
* 3.33.to_r #=> (1874623344892969/562949953421312)
* '33/3'.to_r #=> (11/1)
*
* The reverse operations work as you would expect:
*
* Rational(30, 1).to_i #=> 30
* Rational(1874623344892969, 562949953421312).to_f #=> 3.33
* Rational(11, 1).to_s #=> "11/1"
*
* +Rational+ objects can be compared with other +Numeric+ objects using the
* normal semantics:
*
* Rational(20, 10) == Rational(2, 1) #=> true
* Rational(10) > Rational(1) #=> true
* Rational(9, 2) <=> Rational(8, 3) #=> 1
*
* Similarly, standard mathematical operations support +Rational+ objects, too:
*
* Rational(9, 2) * 2 #=> (9/1)
* Rational(12, 29) / Rational(2,3) #=> (18/29)
* Rational(7,5) + Rational(60) #=> (307/5)
* Rational(22, 5) - Rational(5, 22) #=> (459/110)
* Rational(2,3) ** 3 #=> (8/27)
*/
void
Init_Rational(void)
{
......
id_to_s = rb_intern("to_s");
id_truncate = rb_intern("truncate");
rb_cRational = rb_define_class(RATIONAL_NAME, rb_cNumeric);
rb_cRational = rb_define_class("Rational", rb_cNumeric);
rb_define_alloc_func(rb_cRational, nurat_s_alloc);
rb_undef_method(CLASS_OF(rb_cRational), "allocate");
......
rb_define_method(rb_cRational, "divmod", nurat_divmod, 1);
#if 0
rb_define_method(rb_cRational, "quot", nurat_quot, 1);
rb_define_method(rb_cRational, "quot", nurat_quot, 1);
#endif
rb_define_method(rb_cRational, "remainder", nurat_rem, 1);
#if 0
(3-3/3)