Backport #3803 » ruby_bigdecimal_round_half_with_comments.patch
ext/bigdecimal/bigdecimal.c (working copy) | ||
---|---|---|
*
|
||
* ROUND_UP:: round away from zero
|
||
* ROUND_DOWN:: round towards zero (truncate)
|
||
* ROUND_HALF_UP:: round up if the appropriate digit >= 5, otherwise truncate (default)
|
||
* ROUND_HALF_DOWN:: round up if the appropriate digit >= 6, otherwise truncate
|
||
* ROUND_HALF_EVEN:: round towards the even neighbor (Banker's rounding)
|
||
* ROUND_HALF_UP:: round towards the nearest neighbor, unless both neighbors are equidistant, in which case round away from zero. (default)
|
||
* ROUND_HALF_DOWN:: round towards the nearest neighbor, unless both neighbors are equidistant, in which case round towards zero.
|
||
* ROUND_HALF_EVEN:: round towards the nearest neighbor, unless both neighbors are equidistant, in which case round towards the even neighbor (Banker's rounding)
|
||
* ROUND_CEILING:: round towards positive infinity (ceil)
|
||
* ROUND_FLOOR:: round towards negative infinity (floor)
|
||
*
|
||
... | ... | |
*/
|
||
{
|
||
/* fracf: any positive digit under rounding position? */
|
||
/* fracf_1further: any positive digits under one further than the rounding position? */
|
||
/* exptoadd: number of digits needed to compensate negative nf */
|
||
int fracf;
|
||
int fracf, fracf_1further;
|
||
ssize_t n,i,ix,ioffset, exptoadd;
|
||
BDIGIT v, shifter;
|
||
BDIGIT div;
|
||
... | ... | |
nf += y->exponent * (ssize_t)BASE_FIG;
|
||
exptoadd=0;
|
||
if (nf < 0) {
|
||
/* rounding position too left(large). */
|
||
if((f!=VP_ROUND_CEIL) && (f!=VP_ROUND_FLOOR)) {
|
||
VpSetZero(y,VpGetSign(y)); /* truncate everything */
|
||
return 0;
|
||
}
|
||
/* rounding position too left(large). */
|
||
if((f!=VP_ROUND_CEIL) && (f!=VP_ROUND_FLOOR)) {
|
||
VpSetZero(y,VpGetSign(y)); /* truncate everything */
|
||
return 0;
|
||
}
|
||
exptoadd = -nf;
|
||
nf = 0;
|
||
}
|
||
/* ix: x->fraq[ix] contains round position */
|
||
ix = nf / (ssize_t)BASE_FIG;
|
||
if ((size_t)ix >= y->Prec) return 0; /* rounding position too right(small). */
|
||
ioffset = nf - ix*(ssize_t)BASE_FIG;
|
||
v = y->frac[ix];
|
||
/* drop digits after pointed digit */
|
||
ioffset = nf - ix*(ssize_t)BASE_FIG;
|
||
n = (ssize_t)BASE_FIG - ioffset - 1;
|
||
for (shifter=1,i=0; i<n; ++i) shifter *= 10;
|
||
/* so the representation used (in y->frac) is an array of BDIGIT, where
|
||
each BDIGIT contains a value between 0 and BASE-1, consisting of BASE_FIG
|
||
decimal places.
|
||
|
||
(that numbers of decimal places are typed as ssize_t is somewhat confusing)
|
||
|
||
nf is now position (in decimal places) of the digit from the start of
|
||
the array.
|
||
ix is the position (in BDIGITS) of the BDIGIT containing the decimal digit,
|
||
from the start of the array.
|
||
v is the value of this BDIGIT
|
||
ioffset is the number of extra decimal places along of this decimal digit
|
||
within v.
|
||
n is the number of decimal digits remaining within v after this decimal digit
|
||
shifter is 10**n,
|
||
v % shifter are the remaining digits within v
|
||
v % (shifter * 10) are the digit together with the remaining digits within v
|
||
v / shifter are the digit's predecessors together with the digit
|
||
div = v / shifter / 10 is just the digit's precessors
|
||
(v / shifter) - div*10 is just the digit, which is what v ends up being reassigned to.
|
||
*/
|
||
fracf = (v % (shifter * 10) > 0);
|
||
fracf_1further = ((v % shifter) > 0);
|
||
|
||
v /= shifter;
|
||
div = v / 10;
|
||
v = v - div*10;
|
||
if (fracf == 0) {
|
||
for (i=ix+1; (size_t)i < y->Prec; i++) {
|
||
if (y->frac[i] % BASE) {
|
||
fracf = 1;
|
||
break;
|
||
}
|
||
/* now v is just the digit required.
|
||
now fracf is whether the digit or any of the remaining digits within v are non-zero
|
||
now fracf_1further is whether any of the remaining digits within v are non-zero
|
||
*/
|
||
/* now check all the remaining BDIGITS for zero-ness a whole BDIGIT at a time.
|
||
if we spot any non-zeroness, that means that we foudn a positive digit under
|
||
rounding position, and we also found a positive digit under one further than
|
||
the rounding position, so both searches (to see if any such non-zero digit exists)
|
||
can stop */
|
||
for (i=ix+1; (size_t)i < y->Prec; i++) {
|
||
if (y->frac[i] % BASE) {
|
||
fracf = fracf_1further = 1;
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* now fracf = does any positive digit exist under the rounding position?
|
||
now fracf_1further = does any positive digit exist under one further than the
|
||
rounding position?
|
||
now v = the first digit under the rounding position */
|
||
|
||
/* drop digits after pointed digit */
|
||
memset(y->frac+ix+1, 0, (y->Prec - (ix+1)) * sizeof(BDIGIT));
|
||
switch(f) {
|
||
case VP_ROUND_DOWN: /* Truncate */
|
||
break;
|
||
case VP_ROUND_UP: /* Roundup */
|
||
if (fracf) ++div;
|
||
break;
|
||
break;
|
||
case VP_ROUND_HALF_UP: /* Round half up */
|
||
if (v>=5) ++div;
|
||
break;
|
||
case VP_ROUND_HALF_DOWN: /* Round half down */
|
||
if (v>=6) ++div;
|
||
if (v>5 || (v == 5 && fracf_1further)) ++div;
|
||
break;
|
||
case VP_ROUND_CEIL: /* ceil */
|
||
if (fracf && (VpGetSign(y)>0)) ++div;
|
||
... | ... | |
case VP_ROUND_HALF_EVEN: /* Banker's rounding */
|
||
if (v>5) ++div;
|
||
else if (v==5) {
|
||
if ((size_t)i == (BASE_FIG-1)) {
|
||
if (ix && (y->frac[ix-1]%2)) ++div;
|
||
if (fracf_1further) {
|
||
++div;
|
||
}
|
||
else {
|
||
if (div%2) ++div;
|
||
else {
|
||
if (ioffset == 0) {
|
||
/* v is the first decimal digit of its BDIGIT;
|
||
need to grab the previous BDIGIT if present
|
||
to check for evenness of the previous decimal
|
||
digit (which is same as that of the BDIGIT since
|
||
base 10 has a factor of 2) */
|
||
if (ix && (y->frac[ix-1]%2)) ++div;
|
||
}
|
||
else {
|
||
if (div%2) ++div;
|
||
}
|
||
}
|
||
}
|
||
break;
|
||
... | ... | |
return VpLeftRound(c, (int)VpGetRoundMode(), (ssize_t)ix);
|
||
}
|
||
/* If I understand correctly, this is only ever used to round off the final decimal
|
||
digit of precision */
|
||
static void
|
||
VpInternalRound(Real *c, size_t ixDigit, BDIGIT vPrev, BDIGIT v)
|
||
{
|
||
... | ... | |
if(v >= 5) f = 1;
|
||
break;
|
||
case VP_ROUND_HALF_DOWN:
|
||
/* this is ok - because this is the last digit of precision,
|
||
the case where v == 5 and some further digits are nonzero
|
||
will never occur */
|
||
if(v >= 6) f = 1;
|
||
break;
|
||
case VP_ROUND_CEIL: /* ceil */
|
||
... | ... | |
if(v && (VpGetSign(c)<0)) f = 1;
|
||
break;
|
||
case VP_ROUND_HALF_EVEN: /* Banker's rounding */
|
||
/* as per VP_ROUND_HALF_DOWN, because this is the last digit of precision,
|
||
there is no case to worry about where v == 5 and some further digits are nonzero */
|
||
if(v>5) f = 1;
|
||
else if(v==5 && vPrev%2) f = 1;
|
||
break;
|
test/bigdecimal/test_bigdecimal.rb (working copy) | ||
---|---|---|
assert_equal(3, x.round(0, BigDecimal::ROUND_CEILING))
|
||
assert_equal(2, x.round(0, BigDecimal::ROUND_FLOOR))
|
||
assert_raise(TypeError) { x.round(0, 256) }
|
||
15.times do |n|
|
||
x = BigDecimal.new("5#{'0'*n}1")
|
||
assert_equal(10**(n+2), x.round(-(n+2), BigDecimal::ROUND_HALF_DOWN))
|
||
assert_equal(10**(n+2), x.round(-(n+2), BigDecimal::ROUND_HALF_EVEN))
|
||
x = BigDecimal.new("0.5#{'0'*n}1")
|
||
assert_equal(1, x.round(0, BigDecimal::ROUND_HALF_DOWN))
|
||
assert_equal(1, x.round(0, BigDecimal::ROUND_HALF_EVEN))
|
||
x = BigDecimal.new("-0.5#{'0'*n}1")
|
||
assert_equal(-1, x.round(0, BigDecimal::ROUND_HALF_DOWN))
|
||
assert_equal(-1, x.round(0, BigDecimal::ROUND_HALF_EVEN))
|
||
end
|
||
end
|
||
def test_truncate
|
- « Previous
- 1
- 2
- Next »