Ruby trunk - Feature #14022

String#surround
10/18/2017 04:38 AM - sawa (Tsuyoshi Sawada)

Status: Rejected
Priority: Normal
Assignee:

Target version:

Description

After joining the elements of an array into a string using Array#join, | frequently need to put substrings before and after the string. In
such case, | would have to use either of the following:

[1, 2, 3].join(", ").prepend("<").concat (">") # => "<1, 2, 3>"
"<#{[1, 2, 3].join(", ")}>" #=> "<1, 2, 3>"
020 ¢ [i, 8, 3]).Jedm(T, T) &+ USC # => "<1, 2, 3>"

but none of them is concise enough. | wish there were String#surround that works like this:

[1, 2, 3].jOil’1(", ") .surround ("<", ">") 4 => "<1, 2, 3I>n

Related issues:
Related to Ruby trunk - Feature #15024: Support block in Array#join Open

History

#1 - 10/18/2017 04:43 AM - sawa (Tsuyoshi Sawada)

| would like both destructive and non-destructive versions of the method.

#2 - 10/18/2017 06:07 AM - mame (Yusuke Endoh)

IMO "<#{ foo }>" is more concise than foo.surround("<", ">").

#3 - 10/18/2017 06:20 AM - sawa (Tsuyoshi Sawada)

mame (Yusuke Endoh) In addition to conciseness, | often need to do this kind of string formatting after having done a long method chaining on an
array. In that case, having to do string format from the beginning is not convenient.

"<#{some_array.some_very_long_method_chain.join(", ")}>"
It would be easier to read if String#surround were introduced.

some_array.some_very_long_method_chain.join (", ").surround("<", ">")

Also, in these use cases, the join(", ") operation and surrounding by "<" and ">" are a single logical operation. It makes more sense to do a chaining of
join(...).surround(...) than to use a combination of join and string interpolation of "<" and ">".

#4 - 10/18/2017 09:10 AM - zverok (Victor Shepelev)

+1 for that (and exactly for the method chains).
Always define String#surround in my internal projects.

#5 - 10/18/2017 12:41 PM - Hanmac (Hans Mackowiak)
+1

i thought i have seen something like that before, but i don't remember where
ah now i remember, it was for JQuery#wrap http:/api.jquery.com/wrap/

i think such a surround method might be used for xml stuff and other similar ones

#6 - 10/18/2017 07:04 PM - Eregon (Benoit Daloze)

+1, | often do "<" + long_chain + ">" because "<#{long_chain}>" tends to be harder to read, and wished there was such a method.

Making it part of #join might be slightly more efficient, but it would make the signature more complex, like [1, 2, 3].join(", ", left: "<", right: ">").

#7 - 10/19/2017 05:31 AM - shevegen (Robert A. Heiler)

05/27/2019 1/4

https://redmine.ruby-lang.org/users/18
http://api.jquery.com/wrap/

After joining the elements of an array into a string using Array#join,
| frequently need to put substrings before and after the string.

| do not need to do this often, but | have had a need to do this, largely

due to file names on the *nix commandline that have ' ' characters (space),
so | pad them via " like:

foo bar.mp3

to become:

"foo bar.mp3"

In particular when | then do system() invocation, e. g. to play via
mplayer/mpv.

So | can definitely see from which point Tsuyoshi Sawada is coming.

| also think that the name .surround() for String objects is concise
and may make sense, so | am also in +1 support.

So while | am not entirely sure whether this is extremely common, |
think it may be common enough to make this useful. | also agree on
the explanation given by Benoit Daloze, makes a lot of sense what he
wrote to ruby hackers | think. :)

#8 - 10/20/2017 12:56 AM - avit (Andrew Vit)
An alternate (short but cryptic) way:

str = "one\ntwo"
str.gsub (/".*/m, '<\0>")

e gsub! can do it destructively
e using /m can control if it wraps each line, or all

(A similar usage for wrapping characters in a string is shown in the String#gsub documentation)

Out of curiosity, can someone explain why the * is needed in my regex?

Update: | just realized | could use sub instead, for some reason it doesn't need the » anchor.

I'm not against the idea of this method, just pointing out that there is already a way to do it. Also, should there be an equivalent "unquote" method to

perform (essentially) str[1..-2]?

#9 - 10/20/2017 09:50 AM - knu (Akinori MUSHA)

| thought yield_self was about solving problems like this:

[1, 2, 3]join(", ").yield_self { |s| "<#{s}>" }

A nice-to-have in addition would be a shorter name, a special syntax, or a default block parameter (it, _, or whatever).

#10 - 10/20/2017 10:47 PM - Eregon (Benoit Daloze)
knu (Akinori MUSHA) wrote:

| thought yield_self was about solving problems like this:

[1, 2, 3]join(", ").yield_self { |s| "<#{s}>" }

A nice-to-have in addition would be a shorter name, a special syntax, or a default block parameter (it, _, or whatever).

Interesting idea.
It is very long though.

It also is not as expressive as .surround("<", ">"), which makes the intent easier to read in my opinion.

#11 - 10/22/2017 10:49 PM - shevegen (Robert A. Heiler)

| guess it all ends up to how matz feels about .surround() :)

05/27/2019

2/4

https://bugs.ruby-lang.org/issues/10095
https://bugs.ruby-lang.org/issues/6684#note-2
https://bugs.ruby-lang.org/issues/10095
https://bugs.ruby-lang.org/issues/6684#note-2

#12 - 10/23/2017 08:52 AM - duerst (Martin Diirst)

Two comments/ideas:
1. If the starting string and the ending string in surround are the same, it should be enough to give them only once:
"Hello World!".surround("'") #=> "'Hello World!'"
2. As the examples above mention join a lot, it may also be possible to add two additional arguments to join:
[1, 2, 3, 4].join("™, ™, "<", ">") #=> "<1, 2, 3, 4>"
| would definitely use something like this, e.g. in

array_of_lines.join("\n", "", "\n") #=> lines concatenated with newlines, ending with newline

#13 - 12/12/2017 02:12 PM - matz (Yukihiro Matsumoto)

| see ary.join.surround("<",">") to be no better than "<#{ary.join}>" or "<"+ary.join+">".
If the wrapped expression is long, you can format("<%s>", long_expression). | am not sure why you are so eager to chain method calls here.

Note: | am not rejecting the proposal (yet).
Matz.

#14 - 12/12/2017 02:28 PM - zverok (Victor Shepelev)

matz (Yukihiro Matsumoto)

Basically, in my practice (I can't speak for everyone of course) chaining is almost always a better way to construct value than operators, or
interpolation, or something. Mostly because it follows "natural” flow of data, and therefore makes code more maintainable.

Not that much difference
ary.join(', ") .surround('<', '>")
"<#{ary.join(',"')}>"

More difference:
File.read('some/source/path.txt")
.split ("\n")
.map (&:strip)
.grep_v (/"~; /)
Soin(" ; ™)
.surround (' (', ")'")

"(#{File.read('some/source/path.txt")
.split ("\n")
.map (&:strip)
.grep_v (/%; /)

Join(" ; Mp"
of course, any sane developer rewrites the latter a
result = File.read('some/source/path.txt")

.split ("\n")

.map (&:strip)

.grep_v(/"; /)

Sjoin(" ;M)
"(#{result})"

But, as for me | always become frustrated when | need a new var because my "chain of thought" is broken by absence of methods. So, if we want
optimize for happiness...

Well, that was the reason | fought for yield_self (still hate the name!), so in 2.5.0 you can do:
File.read('some/source/path.txt"')

.split ("\n")

.map (&:strip)

.grep_v(/"; /)

.join(" ;")

.yield_self { |res| " (#{res})" }

But for this really frequent case surround() still feels more elegant.

#15 - 12/28/2017 10:45 PM - shevegen (Robert A. Heiler)

05/27/2019 3/4

https://redmine.ruby-lang.org/users/13

But for this really frequent case surround() still feels more elegant.

Agreed. It is not so frequent for my case, to be honest; but | like

the use case that sawa described since that is similar to ones |
experienced too, in regards to filenames (you know, file names which
may have empty spaces or ' characters and similar, but no " character).
"(#{variable})" works just fine or even "'+filename+"" :D but
string.surround("') may feel more elegant (or perhaps .pad() but

| guess the name .pad() may be semi-reserved or refer to whitespace ...
.surround() seems less problematic)

The wiki lists that it was discussed or mentioned in a developer meeting
in late November 2017:

https://bugs.ruby-lang.org/projects/ruby/wiki/DevelopersMeeting20171129Japan

Not sure if anything has been decided - some meetings seem to have LOTS
of issues, | wonder if the japanese devs can discuss all of these in
less than 4 hours. :)

Perhaps it could be brought up again in 2018 at the next developer
meeting, if time allows?

#16 - 03/15/2018 08:14 AM - sorah (Sorah Fukumori)
- Status changed from Open to Feedback

It appears like yield_self or %s formatting can satisfy the use cases noted here.

Changing this ticket to Feedback for now. sawa (Tsuyoshi Sawada), could you update your opinion by taking a look into this discussion?

#17 - 03/16/2018 12:14 PM - sawa (Tsuyoshi Sawada)

| admit that now we can use yield_self. | didn't think interpolation was elegant enough, but | think | can live with the combination of yield_self and %.
["foo", "bar"]

. join(", n)

.yield_self{|s]| '<%s>' % s}

=> "<foo, bar>"

| am not against closing this issue.

#18 - 04/02/2018 03:34 AM - nobu (Nobuyoshi Nakada)
- Status changed from Feedback to Rejected

#19 - 08/29/2018 09:15 AM - duerst (Martin Diirst)
- Related to Feature #15024: Support block in Array#join added

05/27/2019 4/4

https://bugs.ruby-lang.org/projects/ruby/wiki/DevelopersMeeting20171129Japan
https://redmine.ruby-lang.org/users/2963
http://www.tcpdf.org

