Ruby master - Feature #13765

Add Proc#bind
07/24/2017 09:04 PM - davidcornu (David Cornu)

Status: Open
Priority: Normal
Assignee:

Target version:

Description
Proc has curry but no method to do partial application. Something like Proc#bind might be handy.

A naive implementation might look something like

class Proc
def bind (*bound_args)
-> (*args) { self.call (*bound_args, *args) }
end
end

irb(main) :001:0> foo = -> (first, second) { puts first, second }
=> #<Proc:0x007£fc93a091£f90@ (irb) : 6 (lambda) >

irb(main) :002:0> foo.bind(1l).call(2)

1

2

=> nil

irb (main) :003:0> foo.bind(1l) .bind(2) .call

1

2

which does the job with the downside of only reporting argument mismatches when the returned Proc is called.

irb (main) : 004:0> foo3 = foo.bind(1l) .bind(2) .bind(3)

=> #<Proc:0x007£c9378bcb00@ (irb) :3 (lambda) >

irb (main) :005:0> foo.call

ArgumentError: wrong number of arguments (given 0, expected 2)
from (irb):6:in "block in irb_binding'
from (irb) :35
from /usr/local/bin/irb:11:in "~ <main>'

Related issues:

Related to Ruby master - Feature #6817: Partial application Open
Related to Ruby master - Feature #7939: Alternative curry function creation Feedback
History

#1 - 07/25/2017 10:50 AM - kOkubun (Takashi Kokubun)

Could you show a real Ruby application or code which you can write more effectively if we have partial application?

#2 - 07/25/2017 02:51 PM - shevegen (Robert A. Heiler)

| do not have any pro or con opinion per se; my slight worry is about the name "bind".

When | read .bind, | wonder what is actually bound, and to what it is bound.

#3 - 07/25/2017 07:36 PM - davidcornu (David Cornu)

| do not have any pro or con opinion per se; my slight worry is about the name "bind".

Yeah | share that concern. Ruby has a concept of bound methods which might get confused with this.

Lodash/Underscore refer to this as partial (https://lodash.com/docs/#partial) which could be a better name.

10/21/2020

1/2

https://ruby-doc.org/core-2.4.1/Proc.html#method-i-curry
https://en.wikipedia.org/wiki/Partial_application
https://lodash.com/docs/#partial

#4 - 07/26/2017 01:31 PM - davidcornu (David Cornu)

Could you show a real Ruby application or code which you can write more effectively if we have partial application?

The use case is similar to that of Proc#curry, but I'd agree that typical Ruby code doesn't rely on Procs much. The lack of partial application on Proc
just seemed like an odd omission.

The particular code | was writing that led to this implemented pagination by returning the current page of results and a proc to fetch the next page.

Example:
bind = -> (fn, *bound_args) {
-> (*args) { fn. (*bound_args, *args) }
}
fetch_page = -> (page 1) |

Perform request
[results, bind. (fetch_page, page + 1)]
}

which lets you use it as follows
results, next_page = fetch_page. ()
until results.empty?

Process results

results, next_page = next_page. ()
end

#5 - 07/26/2017 03:36 PM - kOkubun (Takashi Kokubun)
- Related to Feature #6817: Partial application added

#6 - 07/26/2017 03:36 PM - kOkubun (Takashi Kokubun)

- Related to Feature #7939: Alternative curry function creation added

10/21/2020 22

http://www.tcpdf.org

