Ruby master - Bug #12671

Hash#to_proc result is not a lambda, but enforces arity
08/12/2016 01:25 AM - headius (Charles Nutter)

Status: Open
Priority: Normal
Assignee:

Target version:

ruby -v: ruby 2.3.0p0 (2015-12-25 revision Backport: 2.1: UNKNOWN, 2.2: UNKNOWN, 2.3:
53290) [x86_64-darwin14] UNKNOWN
Description
$ ruby23 -e 'pr = {foo:l}.to_proc; puts pr.lambda?; pr.call rescue puts $!; pr.call(l, 2) rescue
puts $!!'
false

wrong number of arguments (given 0, expected 1)
wrong number of arguments (given 2, expected 1)

| believe it should be marked as a lambda, since it enforces arity.

History

#1 - 08/12/2016 05:47 AM - nobu (Nobuyoshi Nakada)

None-lambda doesn't mean that it never checks its arguments.
And if it's a lambda, it doesn't match the arity value.

As for the implementation detail, there is no room for arity in ifuncs.

#2 - 08/12/2016 06:46 AM - headius (Charles Nutter)

JRuby implements Hash#to_proc as:

class Hash
def to_proc
method(:[]) .to_proc
end
end

This allows us to present the proc as a lambda with correct arity:

$ jruby -e "pr = {}.to_proc; puts pr.arity; puts pr.lambda?"

1

true

It works for MRI too:

$ ruby23 -e "class Hash; def to_proc; method(:[]).to_proc; end; end; pr = {}.to_proc; puts pr.arity; puts pr.l
ambda?"

1

true

| think this is more representative of this proc's behavior. Can MRI do it this way?

09/19/2019 1/1



http://www.tcpdf.org

